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Abstract— Dendritic growth of ice in supercooled water 

droplets is studied theoretically and experimentally. The 

measured dendritic growth velocity of ice shows a good 

agreement with the prediction of the Langer and Müller-

Krumbharr (LM-K) growth model at supercoolings less than 7 

K, whereas an increasing overestimation in the latter is observed 

as the droplets are further supercooled. We modify the LM-K 

dendritic growth model with the consideration of the influence of 

interface kinetics. In the present model, a dendrite grows in the 

limit of marginal stability coupled with the diffusion process at 

the liquid-solid interface, and the interface kinetics supercooling 

is introduced in solving the dendritic growth problem. Our 

modification to the LM-K model well describes the dendritic 

growth of ice in water supercooled up to 25 K. This work 

provides a solution to the dendritic growth of ice in the high 

supercooling regime and can serve as a reliable input for the 

studies of icing problems in engineering fields. 
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Supercooling; Water droplet 

I. INTRODUCTION 

The growth velocities of dendritic ice in the bulk of 

supercooled water has been experimentally and theoretically 

studied by various researchers. However, a dendritic growth 

model that is applicable for supercooled water in a large 

supercooling regime is still lacked. In principle, given the 

thermal diffusion equations in liquid and solid phases 

combining specific initial and boundary conditions, the 

dendritic growth in pure supercooled liquids can be solved. 

However, a number of approximations have to be made to 

simplify the theoretical model. First, the dendrite tip shape 

was approximated as a rotating paraboloid in a supercooled 

pure melt [1]. Then, Ivantsov gave the relationship between 

the growth velocity and the dendrite tip radius by solving the 

diffusion process in front of the paraboloid tip [2]. Langer and 

Müller-Krumbharr (LM-K) argued that the dendrite grew with 

a tip having a size at the marginal stability limit and developed 

the constrained growth model [3-6]. The LM-K model well 

predicts the slow dendritic growth at small supercoolings 

irrespective of the chemical nature of systems. In the case of 

supercooled water, Shibkov et al. reported a good agreement 

between the measured two-dimensional growth velocity of an 

ice crystal and the prediction of the LM-K model at the 

supercoolings less than 5 K [7, 8]. However, a more 

reasonable interpretation of the dendritic growth of ice, in 

particular in higher supercooling regime, should consider the 

interface kinetics [9-10]. The Wilson-Frenkel model [11-12] 

gives a microscopic picture of interface kinetics. If the rapid 

dendritic growth is supposed to obey the limit of stability still, 

we can model the rapid dendritic growth by coupling the LM-

K model with the Wilson-Frenkel model. In this work, we 

show that the coupled models can well describe the dendritic 

growth of ice at deep supercooling. 

II. THEORETICAL BASIS 

A. LM-K Model for Dendritic Growth 

The classical approach to describe the dendritic growth of 

a crystal from a pure melt is formulated in terms of a free 

boundary problem. The temperature fields in solid and liquid 

phase satisfy a heat diffusion equation with two boundary 

conditions. The first is the conservation of energy. The second 

is the relationship between the interface temperature and the 

thermodynamic melting point, considering the effect of 

capillarity and interface kinetics. The solution of the free 

boundary problem was first derived by Ivantsov [2]. He 

neglected the capillarity and interface kinetics effects and 

assumed a paraboloid shape of the dendritic tip. The tip moves 

at constant velocity, which is inversely proportional to the tip 

radius. In Ivantsov’s solution, the dimensionless supercooling 

pc T L    is related to the Peclet number p as [2]: 
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mT T T    is the initial bulk supercooling of the melt, 
mT

is the equilibrium melting temperature, T
is the liquid 

temperature far away from the liquid-solid interface, L is the 

latent heat per volume, and pc  is the specific heat per unit 

volume,  is the thermal diffusivity. Ivantsov’s solution 

gives a coupling of v  and R , whereas their single-valued 

dependence of supercooling is unavailable. 

The dendritic tip has a size at marginal stability, which was 

introduced by Langer and Muller-Krumbhaar in their model 

of dendritic growth (LM-K model) [3-4]. They analyzed the 

stability of the Ivantsov’s paraboloidal dendrites by treating 

the effect of surface tension as a linear perturbation, and 

divided the continuum family of Ivantsov’s solutions into 

stable and unstable regions. They assumed that the selected 

dendrite corresponds to the point of marginal stability 

separating the stable and unstable regions. This conjecture 

leads to the prediction of a universal selection parameter   

defined as 2

0= 0.025Rd v    which provides an additional 

relation between the growth velocity and the tip radius. Here   

0d is a capillarity length given by 2

0 m pd T c L , where    is 

the solid-liquid surface tension. The growth velocity as a 
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single-valued function of bulk supercooling is calculated on 

the basis of the marginal stability hypothesis. The dendritic 

growth velocity related to dimensionless supercooling    and 

dimensionless velocity 
0 2V vd   is given as follows: 

2V p                                  (2) 

B. Wilson-Frenkel Model for Interface Kinetics 

To consider the effect of interface kinetics during dendritic 

growth of a supercooled melt, we can use the kinetics 

supercooling term 
kT  in the boundary condition at the 

interface, that is, the interface temperature is modified as 

i m kT T T  . Mostly, 
kT  is related to the growth velocity 

v  by a constant interface kinetics coefficient   as 

kT v   . However, this assumption may not be suitable for 

some substances. For instance, the MD simulations of the 

crystal growth of Lennard-Jones liquid [13] and silicon [14] 

have shown that the growth velocities are in good agreement 

with Wilson-Frenkel model. Rozmanov et al. [15] performed 

a MD simulation of ice crystal growth and found that 

temperature dependent growth velocities can be fitted by a 

functional form similar to the Wilson-Frenkel expression. 

Thus for the present dendritic growth model, we choose the 

Wilson-Frenkel model to take into account the effect of 

interface kinetics. 

The Wilson-Frenkel model proposes the growth velocity of 

a pure material as follows [16]: 
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where a is the cube root of the atomic volume, D  is the 

mass diffusion coefficient in front of the interface,   is an 

average diffusion jump distance in the liquid, 
iT  is the 

interface temperature, k   is the Boltzmann constant, and f  is 

the fraction of repeatable growth sites at the interface. 

Assuming that 2 af   , we can rewrite equation (3) as 

follows: 
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The chosen parameters for water are chosen as 
3 16.0 10  J molL    , 273.15 KmT  . For convenience,   is 

assumed constant [16], and the mass diffusion coefficient 

 iD T  in front of the interface is approximated by bulk mass 

diffusion coefficient which can be obtained from experiments. 

The value of the unknown interface kinetics factor   can be 

determined on the basis of the experiment results. For instance, 

Xu et al. [17] measured the growth velocity of crystalline ice 

from 180 K to 262 K by using a pulse-laser-heating technique. 

They calculated the interface kinetics factor by fitting the 

Wilson-Frenkel model. However, the maximum growth 

velocity of ice they measured was approximately 10 cm/s, 

which is much less than the measured maximum dendritic ice 

growth velocity (60 cm/s) [7]. We tend to use the experimental 

results of dendritic ice growth velocity to determine the 

interface kinetics factor   by applying the coupled model. 

C. Model of Dendritic Growth Involving Interface Kinetics 

In LM-K model, the interface temperature is assumed to be 

the melting point without considering the interface kinetics 

effect. Here we introduce the interface temperature in LM-K 

model, and the solution of dendrite growth problem is written 

as： 
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In the coupled dendritic growth model, as shown in Figure 

1, the interface temperature is considered as a supercooled 

temperature instead of the equilibrium melting point. By 

applying the Wilson-Frenkel model, the interface temperature 

is directly related to the growth velocity involving the kinetics 

effect. Therefore, we reasonably use the Wilson-Frenkel 

description of the interface temperature (equation 4) in our 

model. The final growth velocity of ice dendrites can be 

calculated by solving the equations (1), (2), (4) and (5) 

simultaneously. Before the solving, the interface kinetics 

factor   can be fitted by using the experimental dendritic ice 

growth velocity results.  

 

Fig. 1 The schematic diagram of the coupled dendritic growth 

model. 

III. EXPERIMENTAL METHOD 

The dendritic growth of ice in a single supercooled water 

droplet on a cold plate was investigated by high-speed CCD. 

The schematic diagram of the experimental apparatus is given 

in Figure 2.  

 

Fig. 2 Schematic of the experimental apparatus. 

The main component of the apparatus was a thermally 

controlled PMMA chamber. The chamber was cooled by the 

supply of cold nitrogen gas. The water droplet was dispensed 

from a glass syringe connected to a micropump and deposited 

on the superhydrophobic surface. The environmental 
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humidity was kept low by dry nitrogen flow, to avoid frost 

formation on the substrate. The substrate was cooled by a 

thermoelectric cooler and controlled by a temperature 

controller module to maintain a constant supercooling. The 

superhydrophobic surface was fabricated by coating the 

silicon substrate by silanized silica nanobeads with diameter 

30 nm dispersed in isopropanol (Glaco, Soft99) [18]. 

Ultrapure water with a resistivity of 18.2 MΩ∙cm was used 

in the experiments. First, a droplet was placed on the 

superhydrophobic surface, and the surface was cooled to the 

target temperature. After the temperature was kept for 2-3 min, 

the water droplet was cooled to the target temperature. This 

method could ensure the active control of supercooling from 

5 K to 13 K for the droplets with a volume of 125 L. The 

crystallization of ice was triggered by a needle attached an ice 

crystallite. To achieve larger supercoolings, we reduced the 

droplet volume to 5−15 µL, in which crystallization occured 

spontaneously from the liquid-substrate interface due to 

heterogeneous nucleation. The maximum supercooling in the 

present experiments reached 21 K. The growth process was 

recorded with a high-speed CCD at a rate of 2,000 fps. 

IV. RESULTS AND DISCUSSION 

Figure 3(a) shows the dendritic growth process triggered by 

a fine needle. The growth velocity of a single three-

dimensional dendrite is measured by analyzing the variation 

of dendrite length with time. Figure 3(b) shows the 

spontaneous dendritic growth of ice after heterogeneous 

nucleation at high supercoolings. The crystal growth in Fig. 

3b consists of two distinct stages: the initial rapid growth and 

the subsequent slow growth. During the first process, high 

supercooling drives rapid crystal growth, leading to the 

dendritic morphology of interface due to thermal instability. 

This stage is accompanied by the rapid release of latent heat, 

which depresses the supercooling in front of the interface until 

reaching the equilibrium melting point. After the initial rapid 

growth, a mushy zone representing the mixing of dendrites 

and liquids between dendritic arms forms. The dendritic 

growth velocity is approximated by the front velocity of the 

envelope of the mushy region, as shown in Figure 3(b). 

 
Fig. 3 The schematic diagram of the coupled dendritic growth model. 

Dendritic ice growth in a supercooled water droplet. (a) Dendritic ice 

growth triggered by a fine needle attached an ice crystallite; 

temperature of the water droplet is −5 ºC. (b) Spontaneous dendritic 

ice growth after nucleation; the temperature of the water droplet is 

−21 ºC. 

The dendritic growth velocity of ice as a function of bulk 

supercooling is presented in Figure 4. For the sake of 

comparison, the growth velocity of two-dimensional single 

dendrite reported by Shibkov et al. [7] and the prediction of 

the LM-K model are provided. Our experimental data well 

agree with the results obtained by Shibkov et al. and also the 

prediction of the LM-K model at supercoolings less than 7 K. 

As the supercooling exceeds 7 K, the LM-K model shows an 

overestimation of the growth velocity, more distinctive with 

increasing supercooling. The overestimation is largely 

attributed to the absence of the interface kinetics effect in the 

LM-K model, as mentioned above. 

 

Fig. 4 Dendritic growth velocity under different supercoolings: 

comparison of the experimental and literature data with LM-K model 

and the coupled model.  

The interface kinetics effect in the present dendritic growth 

model depends on two parameters, the diffusion coefficient 

 iD T  and the interface kinetics factor  . We use the bulk 

diffusion coefficients that are taken from the NMR 

experiments by Price et al. [19] to approximate  iD T . The 

interface kinetics factor   is related to microscopic quantities 

including the atomic jump distance from liquid to interface 

and the repeatable growth sites at the interface. In fact, it is 

difficult to be determined directly by experiments, and the 

reported estimations of   vary in the order of magnitude. 

Therefore, the accurate prediction of the dendritic growth 

velocity without any priori knowledge is very tough. However, 

if the present model faithfully reflects the physical nature of 

dendritic growth, a good fit to the experimental data is 

expected. It means that a well-worked dendritic growth model 

of ice used in the high-supercooling environment can be 

available for the studies of the icing problem in macroscopic 

levels. Figure 4 shows the fit to the experimental data up to 

the supercooling of 21 K, and the good consistent between our 

model and the experimental measurements can be set up with 
117.1 10  m   .  

 

Fig. 5 The interface supercoolings at different bulk supercoolings in 

the coupled model.  
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However, our model predicts that the supercooling 

dependence of the dendritic growth of ice decreases as the 

supercooling is further increased in contrast to experiments 

reported by Shibkov et al. [7]. It suggests that the dendritic 

growth prematurely steps into the interface-kinetics-

dominated regime in our model compared to the experimental 

results. This deviation may be introduced by the knowledge of 

  and  iD T . First, the definition of  iD T  refers to the 

diffusion coefficient in front of the liquid-solid interface [20], 

whereas in our calculation the bulk diffusion coefficient of 

water is used instead. The underlying ordered clusters and the 

density fluctuation close to the interface may cause a 

difference between them. Second, the assumption that   is 

independent on supercooling is taken in the calculation. It is 

possible that the value of   varies with supercooling 

considering that the fraction of repeatable growth sites at the 

interface depends on temperature [16, 21]. The clarification of 

these potential factors requires further investigations of the 

dynamic process of dendritic growth at an atomic level, for 

instance, by MD simulations. In a word, the present model 

with its parameter set can well describe the dendritic growth 

of ice up to T~25 K. This supercooling range covers most 

icing processes in engineering applications. Thus the model is 

beneficial for the relevant research of preventing icing. 

Figure 5 shows the interface supercoolings versus different 

bulk supercoolings in the present model. The interface 

supercooling can be neglected when the bulk supercooling is 

lower than ~7 K. Actually, the interface supercooling is about 

0.31 K at 7 K bulk supercooling. The neglect causes an error 

of 7.6% in the dendritic velocity. Thus we recommend the 

present model for the prediction of dendritic growth velocities 

in supercooled water at supercoolings larger than 7 K. 

V. CONCLUSIONS 

The dendritic growth velocity of ice in water droplets has 

been measured in a supercooling range of T  21 K, and the 

maximum of 26.6 cm/s is obtained. Based on the experimental 

results, we focus on the theoretical description of the dendritic 

growth of ice over a wide supercooling range. The classical 

LM-K model accurately predicts the growth velocity of ice at 

small supercoolings (T < 7 K), whereas yields a significant 

overestimation with further increasing supercooling. We 

modify the LM-K model by introducing the interface kinetics 

effect following the Wilson-Frenkel model. The interface is 

no longer regarded as the thermodynamic equilibrium but 

deserves an interface supercooling. The bulk supercooling in 

the Ivantsov’s solution of the dendritic growth with the 

paraboloid shape is rewritten as the interface supercooling 

accordingly. The latter drives the interface moving via 

coupling the atomic diffusion in front of the interface. For the 

dendritic growth of ice, our model shows good consistency 

with the experimental results up to the supercooling of 25 K. 
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