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Abstract— Adverse road surface status in winter has a strong 

impact on traffic safety, mobility, efficiency and maintenance. 
Slippery road statuses caused by water, ice and snow have led to 
fatal accidents around the world every year. The timely road 
surface status information can reduce the potential injuries by 
early warning and maintenance cost through the right 
treatments. This paper investigates the application of the deep 
neural networks especially the semantic segmentation network 
for detailed road surface status recognition based on images. 
Unlike the rough road surface status recognition with one status 
per image through image classification based on convolutional 
neural network, the proposed approach gives out the detailed 
road surface status of different road regions using the semantic 
segmentation network called D-UNet. The D-UNet has the 
architecture consisting of a contracting path to capture context 
and a symmetric expanding path that enables precise localization 
and utilizes the dilated convolutions to increase the receptive 
field of a network exponentially which capture both the local and 
contextual information. Results show that the proposed 
approach has the highest classification performance in 
comparison to the traditional machine learning techniques under 
the small size dataset. The testing accuracy with different 
training dataset sizes is also analyzed, showing the potential of 
achieving much higher accuracy with a larger training dataset. 

Keywords— road surface status recognition, deep learning, 
semantic segmentation, dilated convolutions 

I. INTRODUCTION 

Severe weather conditions can cause the road surface to be 
in a complex status such as moisture, snow, ice or snow mixed 
with ice, which decrease the friction between the wheels and 
the road and then lead to traffic accidents. Statistics from the 
National Highway Traffic Safety Administration(NHTSA) 
indicated that an average of 6 million traffic accidents 
occurred on US highways each year, among which about 1.7 
million traffic accidents are caused by adverse road conditions 
or severe weather, resulting in about 800 thousand injuries and 
7000 deaths. Data released by the Swedish National Institute 
of Road and Transportation (VTI) showed that there were 
obvious differences in the accident rates under different road 
conditions. The occurrence of accidents in frost and ice 
conditions is 3-16 times higher than that in dry road conditions, 
up to 0.53 million/km as shown in [1]. About a quarter of fatal 
traffic accidents in Finland are caused by snow and ice roads 
directly or indirectly. More than 3,800 traffic accidents are 
caused by wet or snow roads every year in Europe.  Therefore, 
it is urgent to develop a system capable of monitoring and 

recognizing the road status timely, then issuing early warning 
signals to avoid potential accidents.  

II. PREVIOUS RESERCH 

In recent years, the development of image processing 
technology and the popularity of road monitoring equipment 
have led to many non-contact road surface status detection and 
recognition methods which based on image technology. 
Surveillance cameras are installed in sections where accidents 
occur frequently. Cameras acquire real-time road images and 
transmit them to the control centre for road surface status 
recognition.  

A. Traditional machine learning  

The usual approach is to intercept the road image from the 
road surveillance video or vehicle cameras. Their underlying 
features such as colour, texture and brightness are extracted 
after a series of pre-processing. Then, machine learning 
techniques such as support vector machine, k nearest 
neighbours, Bayes classifier and neural network are used to 
classify. 

Omer et al. [2] investigate the feasibility of classifying 
winter road surface conditions using images from low cost 
mounted on regular vehicles. All 400 images are marked as 
bare road, snowy road and tracks. RGB features along with 
gradients have been uses as feature vectors. A Support Vector 
Machine (SVM) is trained using the extracted features and 
then used to classify the images into their respective categories 
and have a classification accuracy of over 80%. 

Kawai et al. [3] propose a distinction method for road 
surface at night time. This paper discussed the differences of 
image features of dry, wet and snowy roads under different 
light sources to combine the three features of colour, 
brightness and texture. K nearest neighbour algorithm is used 
for classification and the accuracy can reach 96.1%, 89.4% 
and 95.6% respectively. 

Jonsson et al. [4] use an infrared camera equipped with a 
set of optical wavelength filters to obtain the brightness of 
each pixel as features.  The images have primarily been used 
to develop multivariate data models and also for the 
classification of road conditions in each pixel. The resulting 
imaging system can reliably distinguish between dry, wet, icy, 
or snow covered sections on road surface. This system is a vast 
improvement on existing single spot road status classification 
systems.  

 



 

2 of 6 

B. Deep learning 

In recent years, deep learning technology has made great 
achievements in fields both of academia and industry, 
including image classification, recognition and detection. 
Thereafter, some researchers apply deep learning to the field 
of recognition of pavement state. 

Researchers at Brunswick Polytechnic University in 
Germany intercept six kinds of road surface images from 
KITTI in [5] and Robotcar dataset, which are dry, wet, snow 
and so on. They train and then compare two different models 
--InceptionV3 and ResNet50 respectively. Then a long-term 
and short-term memory unit, is added to further improve the 
accuracy in [6]. 

Similarly, Pan et al. [7] use pre-trained deep classification 
models – Inception and ResNet to classify snow cover on the 
road surface. This method makes full use of the weight of the 
pre-trained model, and only requires a small scale of pavement 
state images for fine-tuning and can achieve 90.7% 
classification accuracy.  

In summary, most of the current methods design and select 
the features manually, such as texture, colour, brightness or 
other features. Then, combine them to form a feature database. 
Finally, machine learning algorithms are used to establish 
classification model. With the development of deep learning, 
some researchers use pre-trained deep neural network to 
classify the road surface images directly and have achieved 
results comparable to traditional machine learning algorithm. 
However, the status of pavement is complex and changeable. 
There are many mixed states such as ice, snow and tracks in a 
region and simple classification cannot meet the requirements 
of practical application. Therefore, the recognition of road 
surface condition should be refined to intensive prediction of 
each pixel in the image and give the information of category, 
that is, image segmentation.  

III. DEEP LEARNING FOR SEMANTIC SEGMENTATION 

Semantic segmentation aims to analyse an image at pixel 
level, which assigns each pixel in the image to an object class. 

Before deep learning took over computer vision, people 
used approaches like TextonForest and Random Forest based 
classifiers for semantic segmentation. Early algorithms are 
usually based on prior knowledge of thresholds, edges or 
regions, which essentially relied on low-level visual 
information of the images themselves. Since these methods 
have no training stage, the computational complexity is 
usually low. Of course, the accuracy is difficult to meet the 
demand without auxiliary information. 

The rise of deep learning has made the trend of using deep 
neural networks to solve semantic segmentation. The 
fundamental reason is that deep networks have strong non-
linear simulation ability, while the traditional algorithms rely 
on the prior to extract features can be replaced by the network 
and even get more abundant features. In 2014, Fully 
Convolutional Networks (FCN) by Long et al. from Berkeley, 
popularized CNN architectures for dense predictions without 
any fully connected layers in [8]. This allowed segmentation 
maps to be generated for image of any size. Almost all the 
subsequent state of the art approaches on semantic 
segmentation adopted this paradigm. Typical recognition nets 
and their deeper successors ostensibly take fixed-sized inputs 
and produce non-spatial outputs. The fully connected layers of 

these nets have fixed dimensions and throw away spatial 
coordinates. Therefore, the fully connected layers are replaced 
by the convolution layers. 

Fully connected layer

convolutions
segmentation

cat

Input images

Input images

 

Fig. 1 Fully Convolution Network(FCN). 

Apart from fully connected layers, one of the main 
problems with using CNNs for segmentation is pooling layers. 
Pooling layers increase the receptive field and are able to 
aggregate the context while discarding the ‘where’ 
information to be preserved. The segmentation task needs to 
align the class label with the original image, so the location 
information should be reintroduced. Two different classes of 
architecture evolved in the literature to tackle this issue. 

First one is encoder-decoder architecture. Encoder 
gradually reduces the spatial dimension with pooling layers 
and decoder gradually recovers the object details and spatial 
dimension. There are usually shortcut connections from 
encoder to decoder to help decoder recover the object details 
better. 

Architecture in the second class use what called as dilated 
in [9] or atrous convolutions in [10] and do away with pooling 
layers. Dilated convolutions allows for exponential increase in 
receptive field without decrease of spatial dimensions. 

IV. NETWORK ARCHITECTURE 

We propose a new architecture with cascaded dilated 
convolutions called D-UNet. Encoder-decoder, a commonly 
used structure of semantic segmentation models is adopted, 
and several cascaded dilated convolutions are added between 
the encoder and decoder to better preserve the global abstract 
features and local details at the same time. 

conv 3×3, ReLU

max pool 2×2

dropout

dilated conv 3×3

pixel wise add

up conv 2×2

conv 1×1, softmax

copy and concat  

Fig.2 Architecture of D-UNet 

The architecture consists of a contracting path to capture 
context and symmetric expanding path that enables precise 
localization. The features of different levels are fused by 
shortcut connections and dilated convolutions.  

A. Encoder 
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The structure of encoder is similar to classical classification 

network VGG. Two 3×3 small convolutions are stacked 
repeatedly. After each convolution, the ReLU activation 
function is used to increase the non-linear simulation ability. 

Finally, the maximum pooling operation of 2×2 is performed 
as a complete down-sampling operation. In each down-
sampling, the number of feature channels is doubled in order 

to extract more diverse features. Several consecutive 3×3 
convolutions can deepen the network and enhance the 
expression ability. Meanwhile, it can reduce the model 
parameters and accelerate the training. In encoder, there are 4 
down-sampling operations. The resolution of features is 
reduced to 1/16 of the original image to extract the local 
details fully. In order to increase the generalization ability of 
the network and avoid over-fitting, 50% of the parameters are 
randomly dropout after the third and fourth down-sampling. 

B. Decoder 

The decoder includes up-sampling operations equal to the 
number of down-sampling in the encoder. The number of 
feature map channels is gradually halved and the resolution is 
restored to the original image size. Transportation convolution 
is used for up-sampling, and the output of layer incorporates a 
down-sampled output with the same resolution from the 
encoder, which is shortcut connection. The shortcut 
connection fuses the low-level features extracted from the 
encoder with the high-level features extracted from the 
decoder, forming a richer and more comprehensive 
description of features. 

C. Dilated convolution 

Apart from the shortcut connections to merge the feature 
map with the same resolution into hierarchical features, there 
are also dilated convolutions with different dilated rate 
superimposed to form more expressive comprehensive 
features.  

Receptive field refers to the size of region in which the 
features in the CNNs are mapped to the input space. And the 
larger, the more context is included. In segmentation task, the 
more information contains, the more likely the pixels will be 
correctly classified. Deepening the network can increase the 
receptive field, but will also increase the complexity as whole 
and make training difficult. Or using the pooling layers first to 
reduce the image size to capture larger receptive field, then 
sample the feature map to restore the resolution of the original 
image. However, pooling will discard details. Dilated 
convolutions balance the contradiction between information 
loss and increased receptive field. 

Take the 3×3 convolution kernel as an example, when a 
traditional convolution operation is performed, a convolution 

kernel is multiplied by pixel in a continuous 3×3 region of 
input tensor and summed point by point, as shown in Fig. 3(a). 
The red dots are input pixels corresponding to the kernel, and 
the green grids ate their receptive fields in the input. The 
dilated convolution is to convolution with a dilated filter, that 
means, to convolute the kernel by a number of pixels spaced 

from the 3×3 region of the input tensor. Fig. 3(b) is produced 
from Fig. 3(a) by a 2-dilated convolution and each element has 

a receptive field of 7×7. Fig. 3(c) is produced from Fig. 3(a) 
by a 4-dilated convolution and each element has a receptive 

field of 15×15. The number of parameters associated with 

each layer is identical. The receptive field grows exponentially 
while the number of parameters grows linearly. Systematic 
dilation supports exponential expansion of the receptive field 
without loss of resolution or coverage. 

（c）（b）（a）  

Fig.3 The receptive field when dilated rate are 1,2 and 4 respectively. 

In the D-UNet network, after the down-sampling of 
encoder, the dilated convolution with rate of 1,2,3,5 is 
performed on the feature maps in turn and the features on 
multi-scale are merged. The shallower feature maps have 
smaller receptive fields, focusing on learning local detail 
features, while the deeper feature maps have larger receptive 
fields and can learn more abstract information which is helpful 
to improve the recognition performance. 

D. Loss function 

Every algorithm in deep learning has a loss function to 
measure the difference between the prediction and ground 
truth.  The closer the difference is to zero, the smaller the 
deviation between the prediction and the real result. Learning 
and updating the parameters are guided by back propagation 
of errors. 

Semantic segmentation can be abstracted as a dense multi-
classification problem. So, we choose cross-entropy loss, 
which is commonly used in multi-classification tasks: 

     _

1
log + 1 log 1cross entropy

n

Loss y a y a
n

       

V. EXPERIMENT 

This chapter will introduce the experimental process in 
detail. The dataset used in the experiment, the training of the 
model, experimental results and comparative analysis will be 
introduced one by one.    

A. Dataset 

The algorithm based on video or image for the recognition 
of non-contact road surface state takes characteristics of wet 
and snow road as the object for recognition. Datasets used by 
researchers in various countries are usually obtained through 
road monitoring video of traffic departments and vehicle-
mounted cameras of non-special vehicles, and then marked by 
themselves according to research needs. Now, there is no 
public and unified special dataset for pavement state 
recognition. 

According to the requirements of the paper, we rely on the 
existing hardware resources of the laboratory and collected a 
large number of images of the campus road. 

The road surface condition recognition algorithm based on 
deep learning needs a large number of image samples as 
support, so it is necessary to collect data through multiple 
ways. Due to the lack of diversity of road surface image 
samples collected in campus roads, it is difficult to obtain 
appropriate images of ice and snow in campus. In order to 
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expand the size of the dataset and ensure the richness and 
diversity of samples, while using the winter pavement images 
of 2017 and 2018 obtained by the laboratory camera, multiple 
sources such as highway video monitoring resources and 
network resources were added to ensure the size of the data 
set meets the requirements. 

TABLE I. ROAD SURFACE STATUS RECOGNITION DATASET 

label status samples pixels label color 

0 background —— ——  

1 Dry 186 4.52e+7  

2 Wet 487 1.56e+8  

3 Snow 461 7.68e+7  

4 Ice 136 3.98e+7  

5 Water 473 7.44e+7  

6 Tracks 337 1.23e+8  

Finally, the self-made dataset of  mixed road surface status 
recognition used in this paper is formed, which includes seven 

state categories：dry, wet, snow, ice, water, track surfaces run 
over by wheels, and unrelated background. Besides a very 
small area of background, each image contains one to three 
pavement states such as an entire area with a muddy rutted 
surface, or a wet-water mixed surface, or a snow-ice mixed 
surface, etc. All image data were randomly divided into 
training set, verification set and test set according to the 
hierarchical sampling method, with 804, 100 and 100 samples 
respectively. Some examples are shown in Fig.4. 

Raw images  Ground truth 

  

  

  

Fig.4 Raw images and ground truth. 

B. Training 

Deep learning model involves a lot of complex matrix 
operation and float calculation in training, which needs to be 
iterated gradually through continuous attempts to find the 
optimal solution among thousands of variables. Therefore, 
higher requirements are put forward for the experimental 
environment. 

The hardware configuration of the experimental platform is 
one GPU of GeForce GTX 1080 Ti and CPU of E5-2650 with 
64GB memory. In terms of software configuration, the 
experimental platform is based on the 64-bit operating system 
of Ubuntu18.04. The current mainstream deep learning 
framework TensorFlow and Python are used to build the 
network model, and the parallel computing architecture 

CUDA and the GPU acceleration library cuDNN are used to 
conduct high-performance parallel computing. In addition, 
Numpy, OpenCV, PIL, matplotlib and other commonly used 
computing library or visual library are used. 

This section conducts experiments on the proposed D-
UNet with cascade dilated convolutions, which mainly 
explores the influence of training parameters on the 
convergence speed of training and the final accuracy. Through 
experiments, it is found that batch size, learning rate and the 
weights of different classes in loss function have significant 
influence on the accuracy of the algorithm. 

1)  Batch size:  This section sets different Batch sizes to 
verify the impact of the Batch size on the algorithm. Due to 
the limitation of the experimental platform hardware, only the 
Batch size of 8 was verified. Table Ⅱ. shows the experimental 
results of the D-UNet model in the test set after 200,000 
iterations. The average pixel accuracy and mean IoU are both 
improved with the increase of the Batch size. 

TABLE Ⅱ. BATCH SIZE EFFECT ON MODEL ACCURACY 

Batch size 2 4 6 8 

mPA/% 49.25 82.32 83.94 84.67 

mIoU/% 23.28 62.98 71.25 74.83 

Batch size represents the number of samples involved in 
the calculation in each iteration, and the larger, the more it can 
reflect the overall distribution of the dataset. As shown in Fig. 
5, pavement state recognition is an unbalanced task, and even 
can be said to image segmentation task itself so, not only 
embodies the disequilibrium distribution in each category of 
the whole dataset, also includes the distribution of all 
categories of pixels in each sample is not balanced. Therefore, 
the larger the batch size is, the more accurately and 
comprehensively the whole data set can be summarized, 
making the feature expressions learned in each iteration of the 
model more accurate. 

  
(a) The proportion of pixels in 

different status 

(b) The number of different 

status 

Fig.5 The distribution of different status in road condition dataset. 

2)  Decay of learning rate: Through the experiment in the 
previous section, the batch size is selected as 8. In this case, 
this section mainly explores the influence of learning rate 
decay. The learning rate adjusts the weight of the network 
according to the gradient of the loss function. The smaller the 
value is, the slower the change speed of the loss function will 
be. Although it can ensure that no local minimum is missed, it 
also means that more time is needed. In the process of network 
training, an appropriate learning rate will accelerate the 
convergence of the model, while an unsatisfactory learning 
rate will directly lead to the loss of the model objective 
function, oscillation or even explosion. This section compares 
the effects of constant learning rate, exponential decay 
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learning rate and piecewise decay learning rate on the training 
process. 

The learning rate with exponential decay is that the learning 
rate decreases exponentially with the number of iterations, and 
its calculation formula is: 

 _
_ __ _ _

global steps
decay per stepsdecayed lr init lr decay rate    

The initial learning rate is set as 0.0001, the decay rate is 
0.95, and the number of decay steps is 50000. The curve of 
learning rate changing with iteration times is shown in the 
green curve in Fig.6. 

The learning rate of piecewise decay is the initial value of 
the learning rate and the value of the subsequent decay in the 
defined piecewise interval. The initial learning rate is 
maintained in the first 100,000 iterations of training, and is set 
as 5 5e  and 1 5e for each subsequent 50,000 iterations, as 
the red curve shown in Fig.6. 

 

Fig.6 Curve of learning rate with iterations. 

 

Fig.7 Training loss under different learning rate 

Fig.7 is the loss of the objective function under three 
different learning rates. It shows that different learning rates 
can eventually make the model converge. Among them, the 
loss of the model training under the fixed constant learning 
rate is slightly larger than that under the learning rate decay 
mechanism. In the training process, the learning rate with 
dynamic changes according to the number of training rounds 
can make the model better converge to the minimum value, 
and the loss curve of the objective function should be in the 
form of a slide in the ideal learning rate. Therefore, the 
learning rate of exponential attenuation or piecewise 
attenuation can meet the demand. In the subsequent 
experiments, piecewise attenuation strategy will be adopted. 

3)  Weight adjustment of loss function:  Studies show that 
the friction coefficient between wheels and road surface is 
different under different road surface conditions, so the 
probability of causing traffic accidents is also different. In 
practical application, more attention should be paid to icy, 
water and muddy rutted road surface, while the possibility of 
accidents caused by dry and wet road surface is relatively low. 
Therefore, different degrees of attention should be paid to 
each pavement state, and the weight of the state with high risk 
coefficient and difficult to be recognized in the loss function 
should be increased. Then, the weighted cross entropy 
function is: 

     
0

1
log 1 log 1

n

weighted_loss ii
Loss w y a y a

n 
        

The weight of loss function corresponding to different 
pavement states is adjusted appropriately according to the 
friction coefficient between wheels, traffic accident rate and 
accuracy, as shown in Table Ⅲ. 

TABLE Ⅲ. WEIGHT OF DIFFERENT PAVEMENT STATUS IN LOSS FUNCTION 

status weight Acc/% IoU/% 

background 0.05 -- -- 

dry 0.1 84.87 82.73 

wet 0.1 92.08 84.95 

snow 0.2 88.25 79.75 

ice 0.15 89.54 87.14 

water 0.25 76.07 62.85 

tracks 0.15 92.11 78.39 

sum/average 1 87.15 79.30 

After adjusting the weight of loss function, the mean pixel 
accuracy and mean IoU are improved on the whole, especially 
for the three states: snow cover, ice and snow, which are 
difficult to identify. The effect of recognition is also improved 
significantly, which verifies the effectiveness of rational 
weight allocation. 

C. Results        

Finally, the batch size is determined to be 8, the piecewise 
decayed learning rate and the weight combination are 
determined to be [0.05, 0.1, 0.1, 0.2, 0.15, 0.25, 0.15], which 
are adopted in subsequent experiments. This section mainly 
discusses the effect of cascade dilated convolutions module on 
improving the accuracy of pavement state recognition. 

The cascade dilated convolution module contains four 
layers of dilated convolution, and different rates are set to 
obtain a wider range of context information. In the experiment, 
the dilated rates are set as [1,2,3,5], [1,2,2,1], and [1,2,4,8] 
respectively. They can completely cover all pixels in the 
feature graph, the last layer of the encoder is connected. And 
is compared with the original U-Net network. 

TABLE Ⅳ. INFLUENCE OF DIFFERENT DILATED RATE 

model U-Net [1,2,3,5] [1,2,2,1] [1,2,4,8] 

Acc/% 84.67 87.15 85.89 85.75 

IoU/% 74.83 79.30 77.76 75.52 

Results in Table Ⅳ show that the model with cascade 
dilated convolution module is relatively accurate, which also 
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confirms the theoretical analysis above. When the dilated rate 
is set as [1,2,3,5], the theoretical effective void convolution is 
the largest, and the highest segmentation accuracy can be 
achieved. 

The semantic segmentation task based on deep learning 
can be considered as a dense pixel classification problem. 
Compared with the classification or recognition task of 
ordinary whole graph, the object to be predicted is each pixel, 
and there is a strong correlation between the pixels in different 
ranges of its surrounding areas. In order to make a correct 
judgment on the category corresponding to a pixel, the 
classification should not only be based on the limited set of 
pixels in a small range around it, but also consider the 
semantic information expressed as a whole. In view of the 
characteristics of state recognition of hybrid pavement which 
has large similarity and irregular shape among the scene 
categories, the improvement scheme is proposed: In the 
original U-Net network, concatenated hollow convolution 
modules are added to obtain context information of different 
ranges. The mean pixel accuracy and mean IoU are improved 
to 87.15% and 79.30%. The identification of three states 
(water, ice, snow) which has lower accuracy in original U-Net 
model improves significantly. 

TABLE Ⅴ. RESULTS OF ORIGINAL U-NET AND D-UNET 

status 
U-Net D-UNet 

Acc/% IoU/% Acc/% IoU/% 

dry 84.95 81.28 84.87 82.73 

wet 92.24 80.00 92.08 84.95 

snow 82.46 74.19 88.35 79.75 

ice 81.32 79.77 89.44 87.14 

water 72.74 57.37 76.07 62.85 

tracks 91.85 79.20 92.11 78.73 

mean 84.67 74.83 87.15 79.30 

 Fig.8 shows the results in the test set. After improving 
the original U-Net network, the overall accuracy of 
recognition has been significantly improved, and the 
segmentation of small targets and boundary positioning are 
also more accurate. Fig.8(b-0) shows that in the mixed road 
surface with snow and tracks, there is a small area of long 
track road surface between the two snow-covered roads. U-
Net ignores the small area and that is ‘undersegmentation’. 
However, the improved D-UNet can accurately classify 
this ‘small target’ in the large background. In Fig.8(c-0) 
and Fig.8 (e-0), it can be intuitively seen that the improved 
network has stronger ability for boundary characterization 
and the segmentation at the boundary of different states is 
smoother and more accurate.  

VI. CONCLUSION 

The road surface status recognition algorithm based on 
deep semantic segmentation model in this paper has achieved 
considerable results on the self-made dataset.  Considering 
that the road surface status recognition is different from the 
general semantic segmentation in that it is very similar 
between different categories. In order to improve the accuracy 
of recognition, the large receptive field needs to provide 
overall global information to reduce the probability of 

misclassification. Therefore, the improvement is conducted 
from the aspect of integrating context information, and the 
effectiveness of the improvement is verified through 
experiments. The mean accuracy of pixel and mean ratio of 
intersection can reach 87.15% and 79.30%, which provides a 
new idea for solving the problem on recognition of road 
surface condition. 

ground truth U-Net D-UNet 

   
（a-0） （a-1） （a-2） 

   
（b-0） （b-1） （b-2） 

   
（c-0） （c-1） （c-2） 

   
（d-0） （d-1） （d-2） 

   
（e-0） （e-1） （e-2） 

Fig.8 Ground truth and segmentation results of U-Net, D-UNet 
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